Oximidines I and II: Novel Antitumor Macrolides from Pseudomonas sp.

Jin Woo Kim,[†] Kazuo Shin-ya,[†] Kazuo Furihata,[‡] Yoichi Hayakawa,^{*,†} and Haruo Seto[†]

Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan, and Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan

Received July 28, 1998

Our screening for cell-cycle inhibitors in transformed cells resulted in the isolation of novel active compounds, oximidines I (1) and II (2), from *Pseudomonas* sp. Q52002. The molecular formulas of **1** and **2** were established as $C_{23}H_{24}N_2O_7$ and $C_{23}H_{24}N_2O_6$, respectively, by high-resolution FABMS. The structures of the oximidines were elucidated by NMR spectral analysis, including a variety of two-dimensional techniques. The absolute stereochemistry of 1 was determined by using the modified Mosher method. The oximidines are novel 12-membered macrolides containing an O-methyloxime moiety. Oximidines I and II selectively inhibited the growth of rat 3Y1 cells transformed with E1A, ras, or src oncogenes.

Many types of oncogenes are implicated in cell-cycle control.^{1–3} Thus, cell-cycle inhibitors in oncogene-transformed cells may act as selective antitumor drugs. Our screening for such antitumor substances resulted in the isolation of novel active metabolites, oximidines I (1) and II (2), from *Pseudomonas* sp. Q52002. We report herein the structures and biological activities of 1 and 2.

The molecular formulas of 1 and 2 were established as $C_{23}H_{24}N_2O_7$ and $C_{23}H_{24}N_2O_6$, respectively, by highresolution FABMS. ¹³C and ¹H NMR data for 1 and 2 are summarized in Table 1.

A series of NMR experiments including COSY and HMQC were used to construct three partial structures of 1, depicted in Figure 2 by bold lines. The partial structure A was extended to be a 2,3-disubstituted phenol based on an HMBC experiment, which revealed longrange couplings from H-4 to C-2, H-5 to C-3 and C-7, H-6 to C-2, and a phenolic hydroxyl proton to C-2, C-3, and C-4. In the partial structure B, the presence of an epoxide between C-12 and C-13 was required by their characteristic ¹³C and ¹H chemical shifts (Table 1). The geometrical configurations were determined to be 8*E*, 10*Z*, 17*Z*, and 20Z from their relevant proton coupling constants (J_{8-9} = 16.5 Hz, J_{10-11} = 11.5 Hz, J_{17-18} = 9.0 Hz, and J_{20-21} = 11.5 Hz).

Long-range correlations, from H-8 to C-2, C-6, and C-7 and from H-9 to C-7, established the connection of the partial structures A and B (Figure 2). Two aromatic protons (H-4 and H-6) displayed four-bond correlations to a carbonyl carbon (C-1), indicating its substitution at C-2. A long-range coupling from H-15 to C-1 identified an ester linkage between C-1 and C-15 which leads to a 12-membered lactone ring. The partial structures B and C were joined via an amide carbonyl (C-19) as determined

Figure 1. Structures of oximidines I (1) and II (2).

Table 1. ¹³C (125 MHz) and ¹H (500 MHz) NMR Data for Oximidines I (1) and II (2) in CDCl₃

	1		2	
no.	$\delta_{\rm C}$	$\delta_{ m H}$ (multiplicity, Hz)	$\delta_{\rm C}$	$\delta_{ m H}$ (multiplicity, Hz)
1	169.8		171.0	
2	114.2		109.9	
3	159.5		162.7	
4	116.5	6.88 (d, 8.0)	117.5	6.89 (d, 8.0)
5	133.4	7.29 (dd, 8.0, 7.5)	134.1	7.31 (dd, 8.0, 7.5)
6	120.1	6.70 (d, 7.5)	121.7	6.73 (d, 7.5)
7	140.8		141.0	
8	134.8	6.96 (d, 16.5)	130.9	6.84 (d, 16.5)
9	128.0	5.96 (dd, 16.5, 7.0)	132.9	6.70 (dd, 16.5, 9.5)
10	129.1	6.10 (ddd, 11.5, 7.0, 1.5)	130.1	6.39 (dd, 10.5, 9.5)
11	124.4	5.69 (d, 11.5)	130.7	6.28 (d, 10.5)
12	57.6	3.90 (m)	127.1	6.08 (d, 12.5)
13	57.7	3.49 (dd, 8.5, 3.5)	133.3	5.71 (dd, 12.5, 3.0)
14	67.5	3.69 (dd, 8.5, 5.5)	72.9	4.32 (br d, 11.0)
15	74.9	5.05 (dt, 5.5, 5.0)	77.6	5.27 (dd, 10.5, 4.5)
16	25.4	2.85 (m)	27.8	2.59 (m)
		2.47 (m)		2.26 (m)
17	108.5	5.11 (dt, 8.5, 8.0)	104.5	4.80 (dt, 9.5, 8.0)
18	123.4	6.81 (dd, 11.0, 8.5)	126.1	6.91 (dd, 10.0, 9.5)
19	162.4		162.1	
20	124.7	5.92 (d, 11.5)	124.5	5.90 (d, 11.5)
21	135.2	6.44 (dd, 11.5, 10.5)	135.5	6.49 (dd, 11.5, 10.5)
22	147.7	8.97 (d, 10.5)	147.7	9.01 (d, 10.5)
OMe	62.3	3.87 (s)	62.3	3.92 (s)
3-OH		9.77 (s)		10.73 (s)
14-OH		3.37 (br)		3.17 (d, 11.0)
18-NH		8.65 (d, 11.0)		8.36 (d, 10.0)

from its long-range couplings to H-18, 18-NH, H-20, and H-21 (Figure 2).

The terminal sp² methine (C-22) in the partial structure C needed to be connected to the remaining nitrogen

^{*} To whom correspondence should be addressed. Tel.: 81-3-5800-2424. Fax: 81-3-3816-0453. E-mail: hayakawa@iam.u-tokyo.ac.jp.

Institute of Molecular and Cellular Biosciences.

¹ Department of Applied Biological Chemistry. (1) Grana, X.; Reddy, E. P. *Oncogene* **1995**, *11*, 211–219.

⁽²⁾ Lloyd, A. C. *Curr. Opin. Genet. Dev.* **1998**, *8*, 43–48.
(3) Peeper, D. S.; Upton, T. M.; Ladha, M. H.; Neuman, E.; Zalvide, J.; Bernards, R.; DeCaprio, J. A.; Ewen, M. E. Nature (London) 1997, 386. 177-181.

Figure 2. Connectivities among the partial structures of **1** by HMBC. Bold lines show proton spin systems, arrows indicate ${}^{1}H{-}{}^{13}C$ long-range correlations, and a dashed line indicates an NOE correlation.

Figure 3. Absolute stereochemistry of **1**. $\Delta \delta$ ($\delta_{S-MTPA} - \delta_{R-MTPA}$) values are expressed in ppm. Dashed lines indicate NOEs.

atom in an imine-type bond. Four-bond ${}^{1}H^{-13}C$ correlations from a methoxyl group to the imine carbon confirmed the presence of an *O*-methyloxime moiety. A NOESY experiment revealed a weak NOE between H-22 and the methoxyl group, indicating *E* geometry for the oxime double bond. The planar structure of **1** thus obtained is shown in Figure 2.

A cis configuration for the epoxide was established by a significant NOE and a 3.5-Hz coupling between H-12 and H-13. In addition, NOEs between H-13 and H₂-16 indicated that H-12, H-13, and C-16 reside in the same orientation on the macrolide ring. A proton on C-14 displayed an NOE to H-11 but not to H-12 and was required to be in the orientation opposite that of H-12, thereby establishing the relative stereochemistry of **1** as shown in Figure 3.

The absolute stereochemistry of oximidine I (1) was elucidated by the modified Mosher method.⁴ Both the (R)- and (S)-2-methoxy-2-(trifluoromethyl)phenyl acetate (MTPA) esters of 1 were prepared and subjected to ¹H NMR analysis. Only the two epoxide protons (H-12 and H-13) appeared downfield in the (R)-derivative spectrum relative to the (S)-derivative one, while most of the other protons including H-15, H₂-16, H-17, and H-18 exhibited upfield shifts in the (R)-derivative spectrum. These data allowed the absolute configuration at C-14 to be assigned as R and completed the total structure of 1 as shown in Figure 1.

The molecular formula of **2**, $C_{23}H_{24}N_2O_6$, showed a loss of one oxygen in comparison with that of **1**. In the ¹H NMR spectrum of **2**, H-12 and H-13 appeared downfield (H-12, δ 3.90 \rightarrow 6.80; H-13, δ 3.49 \rightarrow 5.71), and the corresponding carbon signals were observed at δ 127.1 and δ 133.3, respectively, indicating that the expoxide

Figure 4. Structures of salicylihalamide A (**3**) and CJ-12,-950 (**4**).

Table 2.IC50 Values (ng/mL) of 1 and 2 against Normal
and Transformed Rat 3Y1 Fibroblasts

cell line	oncogene	1	2
3Y1 SV-3Y1 E1A-3Y1 Ad12-3Y1 HR-3Y1 SR-3Y1	SV40 large T E1A E1A, E1B v-H- <i>ras</i> v- <i>src</i>	510 740 30 62 16 27	270 350 17 36 9.0 14

group in **1** is replaced by an olefinic double bond in **2**. The geometrical configuration of the new double bond was identified as Z on the basis of a significant NOE between H-12 and H-13, although their coupling constant exhibited a value (12.5 Hz) intermediate between those for E and Z configurations. The remaining spectral features were essentially identical with those of **1**. The structure of **2** (Figure 1), including the relative stereo-chemistry, was confirmed by COSY, HMQC, HMBC, and NOESY experiments (data not shown).

Recently, a series of 12-membered benzolactones have been isolated from natural sources, e.g., salicylihalamide A (**3**) and its geometrical isomer B from the marine sponge *Haliclona* sp.⁵ and CJ-12,950 (**4**) and its geometrical isomer CJ-13,357 from the fungus *Mortierella verticillata* (Figure 4).⁶ Oximidines I (**1**) and II (**2**) represent two new members of this family and are the first examples produced by a bacterium.

The antitumor effects of **1** and **2** were investigated using normal and transformed 3Y1 rat fibroblasts (Table 2).^{7–9} Oximidines I and II inhibited the growth of 3Y1 cells transformed with the adenovirus E1A, v-H-*ras*, and v-*src* oncogenes at 15- to 30-fold lower concentrations than that of the parent 3Y1 cells, whereas SV40transformed cells showed almost the same sensitivity as normal cells. Flow cytometric analysis revealed that **1** arrested the cell cycle of *ras*- and *src*-transformed 3Y1 cells at the G1 phase (data not shown). Further biological studies on the oximidines are in progress.

Experimental Section

Production and Isolation. The producing organism was inoculated into 500-mL Erlenmeyer flasks containing 100 mL of a production medium consisting of soluble starch 2%, glycerol 0.5%, soybean meal 1.5%, corn steep liquor 0.5%, NaCl

⁽⁴⁾ Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. **1991**, *113*, 4092–4096.

⁽⁵⁾ Erickson, K. L.; Beutler, J. A.; Cardellina, J. H., II; Boyd, M. R. J. Org. Chem. **1997**, 62, 8188–8192.

⁽⁶⁾ Dekker, K. A.; Aiello, R. J.; Hirai, H.; Inagaki, T.; Sakakibara, T.; Suzuki, Y.; Thompson, J. F.; Yamauchi, Y.; Kojima, N. *J. Antibiot*. **1998**, *51*, 14–20.

⁽⁷⁾ Kimura, G.; Itagaki, A.; Summers, J. Int. J. Cancer 1975, 15, 694–706.

⁽⁸⁾ Zaitsu, H.; Tanaka, H.; Mitsudomi, T.; Matsuzaki, A.; Ohtsu, M.; Kimura, G. *Biomed. Res.* **1988**, *9*, 181–197.

⁽⁹⁾ Shimura, H.; Mitsudomi, T.; Matsuzaki, A.; Kabemura, M.; Okuda, A.; Kimura, G. *Cell Struct. Funct.* **1990**, *15*, 211–219.

0.3%, and CaCO₃ 0.3% (pH 7.0, before sterilization). The fermentation was carried out at 28 °C for 72 h on a rotary shaker at 200 rpm.

The culture supernatant (2 L) and the mycelial acetone extract were combined and extracted with EtOAc. The extract was chromatographed on a silica-gel column with CHCl₃–MeOH (80:1) and then subjected to HPLC using a YMC-Pack D-ODS-7 column. Development of the column with 60% MeOH gave active fractions I and II. The fraction I was further purified by HPLC using a PEGASIL ODS column with 55% MeOH. The active fraction was evaporated to dryness, to yield a colorless powder of **1** (108 mg). The fraction II was subjected to silica-gel TLC with hexane–EtOAc (1:1). The active fraction was purified by Sephadex LH-20 column chromatography with CHCl₃-MeOH (1:1), following which it was concentrated to dryness to give a colorless power of **2** (15 mg).

Oximidine I (1): mp 104–106 °C; $[\alpha]^{22}_{D}$ –286° (*c* 1.0, MeOH); UV λ_{max} 272 nm (ϵ 30500) in MeOH; 203 nm (ϵ 112000) and 270 nm (30500) in 0.01 M NaOH–MeOH; IR (KBr) ν_{max} 3350, 1710, and 1650 cm⁻¹; FABMS *m*/*z* 441.1673 MH⁺ (calcd for C₂₃H₂₅N₂O₇, 441.1662).

Oximidine II (2): mp 113–115 °C; $[\alpha]^{26}_D$ –141° (*c* 0.75, MeOH); UV λ_{max} 282 nm (ϵ 30300) in MeOH; 203 nm (ϵ 138000) and 279 nm (28200) in 0.01 M NaOH–MeOH; IR (KBr) ν_{max} 3400, 1700, and 1650 cm⁻¹; FABMS *m*/*z* 425.1702 MH⁺ (calcd for C₂₃H₂₅N₂O₆, 425.1713).

Preparation of the MTPA Esters of 1. To a solution of **1** (12 mg) in CHCl₃ (500 μL) were added 500 μL of pyridine, 0.1 mg of 4-(dimethylamino)pyridine, and 56 mg of (S)-(+)-α-methoxy-α-(trifluoromethyl)phenylacetyl chloride. The reaction mixture was allowed to stand at room temperature for 30 min. After 10 mL, each, of H₂O and CHCl₃ were added, the CHCl₃ layer was washed with aqueous HCl and aqueous NaOH, dried over Na₂SO₄, and evaporated to dryness. The dried material was purified by HPLC using a YMC-Pack D-ODS-7 column with 60% MeOH. The major UV peak was collected and evaporated to dryness to give a colorless powder of the (*R*)-MTPA ester of **1** (3.2 mg). Similarly, the (*S*)-MTPA ester of **1** (4.3 mg) was obtained using (*R*)-(-)-α-methoxy-α-(trifluoromethyl)phenylacetyl chloride.

(*R*)-**MTPA ester of 1:** ¹H NMR (CDCl₃) δ 9.81 (s, OH-3), 8.99 (d, J = 10.0 Hz, H-22), 7.88 (d, J = 11.0 Hz, 18-NH), 7.54

(d, J = 7.5 Hz, MTPA), 7.44 (t, J = 7.5 Hz, MTPA), 7.40 (dd, J = 8.0, 7.5 Hz, H-5), 7.40 (t, J = 7.5 Hz, MPTA), 7.07 (d, J = 16.0 Hz, H-8), 6.94 (d, J = 8.0 Hz, H-4), 6.75 (d, J = 7.5 Hz, H-6), 6.50 (dd, J = 11.0, 10.0 Hz, H-21), 6.38 (dd, J = 11.0, 8.5 Hz, H-18), 6.20 (ddd, J = 11.5, 6.0, 1.5 Hz, H-10), 5.86 (dd, J = 16.0, 6.0 Hz, H-9), 5.84 (d, J = 11.0 Hz, H-20), 5.81 (d, J = 11.5 Hz, H-11), 5.17 (dd, J = 9.0, 6.0 Hz, H-14), 4.90 (m, H-15), 4.41 (dt, J = 8.5, 8.0 Hz, H-17), 3.96 (m, H-12), 3.93 (s, OMe), 3.70 (s, MTPA-OMe), 3.62 (dd, J = 9.0, 3.5 Hz, H-13), 2.56 (m, H-16_a), 2.40 (m, H-16_b).

(S)-MTPA ester of 1: ¹H NMR (CDCl₃) δ 9.86 (s, OH-3), 9.01 (d, J = 10.5 Hz, H-22), 8.20 (d, J = 11.0 Hz, 18-NH), 7.55 (d, J = 8.0 Hz, MTPA), 7.43 (t, J = 8.0 Hz, MTPA), 7.40 (dd, J = 8.0, 7.5 Hz, H-5), 7.40 (t, J = 8.0 Hz, MTPA), 7.08 (d, J =16.5 Hz, H-8), 6.95 (d, J = 8.0 Hz, H-4), 6.81 (dd, J = 11.0, 8.5 Hz, H-18), 6.76 (d, J = 7.5 Hz, H-6), 6.52 (dd, J = 11.5, 10.5 Hz, H-21), 6.20 (ddd, J = 11.5, 6.0, 1.5 Hz, H-10), 5.91 (d, J =11.5 Hz, H-20), 5.86 (dd, J = 16.5, 6.0 Hz, H-9), 5.82 (d, J =11.5 Hz, H-11), 5.22 (dd, J = 9.0, 6.0 Hz, H-14), 5.05 (m, H-15), 4.80 (dt, J = 8.5, 8.0 Hz, H-17), 3.93 (s, OMe), 3.93 (m, H-12), 3.57 (dd, J = 9.0, 3.5 Hz, H-13), 3.48 (s, MTPA–OMe), 2.74 (m, H-16_a), 2.64 (m, H-16_b).

Acknowledgment. We thank Mr. Koji Nagai, Yamanouchi Pharmaceutical Co. Ltd., for the identification and fermentation of the producing organism. This work was supported in part by a Grant-in-Aid for Scientific Research on Priority Areas, The Ministry of Education, Science, Sports, and Culture, Japan, and Research for the Future Program (RFTF), Japan Society for the Promotion of Science.

Supporting Information Available: Spectral data (¹H NMR, ¹³C NMR, COSY, HMQC, HMBC, and NOESY) are available for oximidines I and II in CDCl₃ (12 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

JO9814997